Offene Stellen

Wir suchen eine(n) motivierte(n), enthusiastische(n) Studenten/-in, der/die gerne seine/ihre Masterarbeit am Institut für Biochemie und Molekularbiologie (in Zusammenarbeit mit der CHIP-Next Generation Sequencing Core Facility, Dr. Ivan Costa) anfertigen möchte.

Wir haben ASH2L als Interaktionspartner des Onkoproteins c-MYC identifiziert. ASH2L ist eine Core-Untereinheit von Histon-Methyltransferase-Komplexen (MLL-Komplexe), die Histon H3 an Lysin 4 methylieren. Diese Modifikation ist essentiell für die Genexpression. Zudem besitzt ASH2L onkogene Aktivität, wie auch andere Untereinheiten der MLL-Komplexe. In embryonalen Mausfibroblasten, in denen wir das Ash2l-Gen mittels Rekombination deletieren können (knockout MEFs), sollen die funktionalen Domänen von ASH2L charakterisiert werden. Dazu sollen die knockout MEFs mit humanem ASH2L und Mutanten rekonstituiert werden. Die Konsequenzen auf die Genexpression und das Proliferationsverhalten der Zellen sollen untersucht werden.
Wichtige Methoden: Zellkultur, retrovirale Infektion von Zellen, Herstellung von Mutanten, qRT-PCR, ChIP, FACS, SDS-PAGE – Western Blot, Histon-Methyltransferase-Assays.


Ausgewählte Publikationen:

  • Guccione, E., Bassi, C., Casadio, F., Martinato, F., Cesaroni, M., Schuchlautz, H., Lüscher, B., and Amati, B. 2007. Methylation of histone H3R2 by PRMT6 and H3K4 by MLL complexes are mutually exclusive. Nature 449, 933-937.

  • Lüscher-Firzlaff*, J., Gawlista*, I., Vervoorts, J., Kapelle, K., Braunschweig, T., Walsemann, G., Rodgarkia-Schamberger, C., Schuchlautz, H., Dreschers, S., Kremmer, E., Lilischkis, R., Cerni, C., Wellmann, A., and Lüscher, B. 2008. The human trithorax protein hASH2 functions as an oncoprotein. Cancer Res. 68, 749-758. *equal contribution

  • Lüscher, B. and Vervoorts, J. 2012. Regulation of gene transcription by the oncoprotein MYC. Gene, 494, 145-160.

  • Ullius, A., Lüscher-Firzlaff, J., Costa, I. G., Walsemann, G., Forst, A. H., Gusmao, E. G., Kapelle, K., Kleine, H., Kremmer, E., Vervoorts, J., and Lüscher, B. 2014. The interaction of MYC with the trithorax protein ASH2L promotes gene transcription by regulating H3K27 modification. Nucleic Acids Research 42, 6901-6920.


Kontakt:

Prof. Dr. Bernhard Lüscher
luescherrwth-aachende
Institut für Biochemie und Molekularbiologie,
Medizinische Fakultät, RWTH Aachen University,
Pauwelsstrasse 30,
52074 Aachen

Wir suchen eine(n) motivierte(n), enthusiastische(n) Studenten/-in, der/die gerne seine/ihre Masterarbeit am Institut für Biochemie und Molekularbiologie in Zusammenarbeit mit der Proteomics-Core-Facility (Dr. Preissinger) anfertigen möchte.

Mono-ADP-Ribosylierung ist eine posttranslationelle Modifikation von Proteinen, die mit verschiedenen zellulären Prozessen assoziiert ist. Mit ARTD10/PARP10 haben wir die erste intrazelluläre Mono-ADP-Ribosyltransferase identifiziert und zelluläre Prozesse beschrieben, die durch ARTD10 reguliert werden. In dem Projekt sollen die Modifizierungsstellen von NEMO, ein Schlüsselprotein im NF-kB-Signalweg, identifiziert, mutiert und funktional analysiert werden. Neben NEMO sollen verwandte Proteine, die ebenfalls ARTD10-Substrate sind und für die Autophagie in Zellen wichtig sind, untersucht werden.
Wichtige Methoden: Protein Herstellung in Bakterien und Aufreinigung, ADP-Ribosylierungsassays, Herstellung von Mutanten, SDS-PAGE – Western Blot, Zellkultur, retrovirale Infektion von Zellen, Analyse der NF-kB-Signalübertragung, Autophagie-Assays.


Ausgewählte Publikationen:

  • Kleine, H., Poreba, E., Lesniewicz, K., Hassa, P. O., Hottiger, M. O., Litchfield, D. W., Shilton, B. H., and Lüscher, B. 2008. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 32, 57-69.

  • Rosenthal, F.*, Feijs, K. L. H.*, Frugier, E., Bonalli, M., Forst, A. H., Imhof, R., Winkler, H. C., Caflisch, A., Hassa, P. O., Lüscher, B.*, and Hottiger, M. O.* 2013. Macrodomain-containing proteins are novel mono-ADP-ribosylhydrolases. Nature Structural and Molecular Biology 20, 502-507. *equal contribution

  • Verheugd, P., Forst, A. H., Milke, L., Herzog, N., Feijs, K. L. H., Kremmer, E., Kleine, H., and Lüscher, B. 2013. Regulation of NF-kB signaling by the mono-ADP-ribosyltransferase ARTD10. Nature Communications 4, 1683.

  • Feijs, K. L. H., Forst, A. H., Verheugd, P., and Lüscher, B. 2013. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nature Reviews Molecular Cell Biology 13, 443-451.


Kontakt:

Prof. Dr. Bernhard Lüscher
luescherrwth-aachende
Institut für Biochemie und Molekularbiologie,
Medizinische Fakultät, RWTH Aachen University,
Pauwelsstrasse 30,
52074 Aachen

Wir suchen eine(n) motivierte(n), enthusiastische(n) Stundeten/-in, der/die im Rahmen seiner/ihrer Bachelorarbeit (kombiniert mit Praxissemester) oder Masterarbeit (kombiniert mit Forschungspraktikum) am Institut für Biochemie und Molekularbiologie unsere aktuelle Forschung unterstützen möchte.

Unsere Arbeitsgruppe erforscht die Funktion von Mono-ADP-Ribosylierung, einer posttranslationellen Modifikation, in Wirts-Pathogen-Interaktionen. Mit ARTD10 haben wir die erste intrazelluläre Mono-ADP-Ribosyltransferase definieren können. Seither konnten wir zeigen, dass Mono-ADP-Ribosylierung zahlreiche verschiedene zelluläre Prozesse wie den NF-k B Signalweg reguliert. Letzte Forschungsergebnisse legen eine Rolle in der angeborenen Immunantwort nahe: Die Expression von ARTD10 wird durch IFNa sowie der Infektion mit Pathogenen getriggert. Mono-ADP-ribosylierung ist wie viele posttranslationale Modifikationen reversibel, was wir mit der detaillierten Charakterisierung von einigen sogenannten Makrodomänen beweisen konnten. Neben zellulären Makrodomänen haben wir uns zuletzt auf virale Makrodomänen fokussiert und konnten zeigen, dass diese viralen Makrodomänen ebenfalls in der Lage sind, Mono-ADP-Ribosylierung effizient zu revertieren - ein weiterer Hinweis dafür, dass Mono-ADP-Ribosylierung eine Rolle in der Immunabwehr gegen Pathogene einnimmt.Projekte für Bachelor- und Masterarbeiten lassen sich in diesem jungen Forschungsfeld zeitnah definieren. Methodisch erwartet sie die Herstellung und Aufreinigung von Proteinen und entsprechender Mutanten, ADP-Ribosylierungs- und Hydrolaseassays, SDS-PAGE und Westernblot, Zellkultur, qRT-PCR und Reportergenassays.

Wenn Sie sich selbst in diesem Feld wiederfinden können und Spaß an Grundlagenforschung haben, dann freuen wir uns auf Ihre Bewerbung!


Ausgewählte Publikationen:

  • Eckei L., S. Krieg, M. Bütepage, A. Lehmann, A. Gross, B. Lippok, A.R. Grimm, B.M. Kümmerer, G. Rossetti, B. Lüscher, P. Verheugd. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep. Feb 2; 7:41746, 2017.

  • Verheugd P., M. Bütepage, L. Eckei, B. Lüscher. Players in ADP-ribosylation: Readers and Erasers. Curr Protein Pept Sci. 17(7):654-667, 2016.

  • Bütepage M., L. Eckei, P. Verheugd, B. Lüscher. Intracellular Mono-ADP-Ribosylation in Signaling and Disease. Cells. Sep 25;4(4):569-95, 2015.

  • Verheugd P., A.H. Forst, L. Milke, N. Herzog, K.L. Feijs, E. Kremmer, H. Kleine, B. Lüscher. Regulation of NF-k B signaling by the mono-ADP-ribosyltransferase ARTD10. Nat Commun. 4:1683, 2013.


Kontakt:

Dr. rer. nat. Patricia Korn (geb. Verheugd)
pkornukaachende
Institut für Biochemie und Molekularbiologie,
Pauwelsstraße 30, 52074 Aachen

We are a young research group embedded at the University Hospital of the RWTH Aachen. Undergraduate students with a keen interest in fundamental science are invited to join our lab. These projects will be performed in a team currently consisting of two senior scientists, three PhD students, two master students and a technician. We especially encourage applications from minority groups.

We are interested in the modification of proteins and RNA with ADP-ribose, which is mediated by enzymes of the PARP family. ADP-ribosylation is involved in diverse processes, such as DNA damage repair, transcription, immunity and cancer. There are many open questions, such as when ADP-ribosylation occurs, how it is regulated and to which (patho)physiological processes it contributes.

Projects in our lab can be shaped according to students interests and time-frame. We are currently characterising several PARP enzymes on a biochemical level. Methods used are protein purification from mammalian, insect and E.coli cells, enzymatic assays, western and slot blotting. We are also interested in the function of these enzymes in cells, for which students would learn to make stable overexpression or knock-out cells with CRISPR/Cas9, FACS, proliferation assays, western blot and confocal microscopy. To determine more global effects of ADP-ribosylation on cellular homeostasis, we are performing mass spectrometry as well as Nanopore sequencing. These biochemical and cell biological studies will increase our understanding of how ADP-ribosylation is involved in disease and are currently focusing specifically on the role of PARPs in cancer as well as in response to viral infection. Students in our group will thus have the opportunity to be trained in a broad spectrum of methods.

An internship can be combined with a paid student assistant position. Students will be part of the Institute of Biochemistry and Molecular Biology and join departmental seminar series and journal clubs. Student projects are usually part of larger research projects, which has enabled previous master students to contribute to publications. It may also be possible to continue as PhD student.

For more detailed information on the currently ongoing projects or for other informal inquiries, please get in touch. To apply for a position, please email us a CV, a brief statement of research interests and indicate the time period during which you’d like to perform research.

Get in touch:
Dr. Karla Feijs-Žaja: kfeijsukaachende
Dr. Roko Žaja: rzajaukaachende

www.fezalab.com

Further reading

  1. Weixler, L., N. J. Ikenga, J. Voorneveld, G. Aydin, T. M. Bolte, J. Momoh, M. Butepage, A. Golzmann, B. Luscher, D. V. Filippov, R. Zaja, and K. L. Feijs. 2023. 'Protein and RNA ADP-ribosylation detection is influenced by sample preparation and reagents used', Life Sci Alliance, 6.
  2. Weixler, L., K. L. H. Feijs, and R. Zaja. 2022. 'ADP-ribosylation of RNA in mammalian cells is mediated by TRPT1 and multiple PARPs', Nucleic Acids Res.
  3. Feijs, K. L. H., and R. Zaja. 2022. 'Are PARPs promiscuous?', Biosci Rep, 42.
  4. Weixler, L., K. Scharinger, J. Momoh, B. Luscher, K. L. H. Feijs, and R. Zaja. 2021. 'ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function', Nucleic Acids Res, 49: 3634-50.
  5. Zaja, R., G. Aydin, B. E. Lippok, R. Feederle, B. Luscher, and K. L. H. Feijs. 2020. 'Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome', Sci Rep, 10: 8286.